Ann Conkle
Dec 21, 2011

Innovative machine learning method predicts thought processes

Neuroscientists at the University of California, Los Angeles, are using computerized machine learning (ML) methods to analyze and predict mental states. In a new study, researchers used a functional MRI to observe brain activity as cigarette smokers watched a video meant to induce nicotine cravings, a neutral video or no video at all. From this data, ML algorithms were able to anticipate changes in subjects' underlying neurocognitive structure, predicting with a high degree of accuracy (up to 90 percent) what they were watching and if they were experiencing cravings. Neuroscientists hope to someday use these ML methods in a biofeedback context, showing subjects real-time brain readouts to let them know when they are experiencing cravings and how intense those cravings are, in the hopes of training them to control the cravings. But, since this clearly changes the thought process and cognitive state for the subject, they may face special challenges in trying to decode a moving target.

 
Patents
1
0 Comments
Related Articles
Window into the mind: A new fMRI brain decoding study promises new technologies, stirs up controversy
A neuroimaging research group from the University of California, Berkeley, recently astonished the world with images of video clips reconstructed... Read More
Ann Conkle
Dec 20, 2011
Handheld device quickly detects traumatic brain injury
In traumatic brain injuries, minutes matter. Quick detection and treatment can prevent permanent brain damage and save lives. Researchers at... Read More