Grass to gas: UGA researchersâ genome map speeds biofuel development
Researchers at the University of Georgia have taken a major step in the ongoing effort to find sources of cleaner, renewable energy by mapping the genomes of two originator cells of Miscanthus x giganteus, a large perennial grass with promise as a source of ethanol and bioenergy. Miscanthus is a natural candidate for biomass farming. Its sugarcane-like stalks grow to more than 12 feet in height in soil of marginal quality; it requires very little fertilizer; it grows well in moist temperate climates across the United States, Europe and Asia; and in the eastern U.S. it can produce more biomass on less acreage than other candidate biofuel crops. Miscanthus is also a cleaner source of energy than fossil fuels. When coal or oil is burned, it releases carbon that has been trapped under the earth's crust into the atmosphere, which is a major cause of global climate change. Miscanthus removes carbon from the atmosphere as it grows. When it is burned, it releases only the carbon it collected, effectively making it carbon neutral.